A Novel Approach for Real-Time Quality Monitoring in Machining of Aerospace Alloy through Acoustic Emission Signal Transformation for DNN

نویسندگان

چکیده

Gamma titanium aluminide (γ-TiAl) is considered a high-performance, low-density replacement for nickel-based superalloys in the aerospace industry due to its high specific strength, which retained at temperatures above 800 °C. However, low damage tolerance, i.e., brittle material behavior with propensity rapid crack propagation, has limited application of γ-TiAl. Any cracks introduced during manufacturing would dramatically lower useful (fatigue) life γ-TiAl components, making workpiece surface’s quality from finish machining critical component product and performance. To address this issue enable more widespread use γ-TiAl, research aims develop real-time non-destructive evaluation (NDE) monitoring technique based on acoustic emission (AE) signals, wavelet transform, deep neural networks (DNN). Previous efforts have opted traditional approaches AE signal analysis, using statistical feature extraction classification, face challenges such as good/relevant features classification accuracy. Hence, work proposes novel AI-enabled method that uses convolutional network (CNN) extract rich relevant two-dimensional image representation 1D time-domain signals (known scalograms), subsequently classifying signature pedigreed experimental data finally predicting process-induced surface quality. The results present show good accuracy 80.83% scalogram images, in-situ data, VGG-19 pre-trained network, establishing significant potential processes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

Proposed new signal for real-time stress monitoring: Combination of physiological measures

Human stress is a physiological tension that appears when a person responds to mental, emotional, or physical chal-lenges. Detecting human stress and developing methods to manage it, has become an important issue nowadays. Au-tomatic stress detection through physiological signals may be a useful method for solving this problem. In most of the earlier studies, long-term time window was considere...

متن کامل

Process capability improvement through DMAIC for aluminum alloy wheel machining

This paper first enlists the generic problems of alloy wheel machining and subsequently details on the process improvement of the identified critical-to-quality machining characteristic of A356 aluminum alloy wheel machining process. The causal factors are traced using the Ishikawa diagram and prioritization of corrective actions is done through process failure modes and effects analysis. Proce...

متن کامل

A Time-Frequency approach for EEG signal segmentation

The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of manufacturing and materials processing

سال: 2022

ISSN: ['2504-4494']

DOI: https://doi.org/10.3390/jmmp6010018